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Hybrid Multilevel/Multigrid Potential Preconditioner
for Fast Finite Element Modeling

Yu Zhu, Student Member, IEEE,and Andreas C. Cangellaris, Fellow, IEEE

Abstract—A robust hybrid multilevel/multigrid potential
preconditioner is introduced for the fast and robust finite-element
modeling of electromagnetic structures. The proposed precon-
ditioning process combines the advantages of the hierarchical
multilevel preconditioner and the nested multigrid potential
preconditioner into a novel preconditioner with superior compu-
tational versatility. Numerical experiments from the application
of the new preconditioner to the finite-element analysis of mi-
crowave devices demonstrate its superior numerical convergence
and efficient memory usage.

Index Terms—Finite-element method, hierarchical multilevel,
hybrid preconditioner, nested multigrid, vector and scalar poten-
tial formulation.

I. INTRODUCTION

T HE reasons for the slow convergence of the iterative solu-
tion of the finite-element approximation of the electrody-

namic problem are by now well understood. They are associated
with the dc modes contained in the null space of the curl oper-
ator and with the ill-conditioning of the finite-element method
(FEM) matrix resulting from the oversampling of some of the
low-frequency physical modes [1]. As it was proposed in [2],
the spurious dc modes can be suppressed through the introduc-
tion of a spurious electric charge and the explicit imposition of
the divergence-free condition, , for the electromag-
netic field. On the other hand, the difficulties associated with
low-frequency physical modes can be addressed effectively by
solving problems tentatively on coarser grids as in [3] and [4]
or, equivalently, in lower order basis function spaces as in [6].
More specifically, those modes that are oversampled on the orig-
inal FEM grid can be solved without loss of accuracy using FEM
approximations with much fewer degrees of freedom.

The nested multigrid potential preconditioner uses a set of
nested grids obtained by dividing each tetrahedron in the coarser
grid into eight equal-volume subtetrahedra. Its application to
electromagnetic problems appeared in [3] and [5]. However, the
edge elements used in the nested multigrid technique are the
lowest order basis functions [7]. Since they are not as effective
in reducing the numerical dispersion error as higher order basis
functions, the hierarchical multilevel potential preconditioner
was proposed in [6] as an alternative. This latter technique uses
one grid and a sets of hierarchical basis functions, i.e.,
and , for enhanced accuracy. However, it requires the
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direct solution to the FEM matrix obtained from the approxi-
mation of the problem on the space. This limits its
capability to solve electrically large structures.

To overcome these shortcomings of poor accuracy for multi-
grid preconditioner and factorization of large matrix for multi-
level preconditioner, we propose a hybrid preconditioner, which
uses hierarchical multilevel technique on the top of nested multi-
grid one so that it increases the the accuracy of multigrid FEM
on one hand and decreases the factorization cost of multilevel
FEM by further shrinking the size of matrix for LU on the other
hand.

II. HYBRID MULTILEVEL /MULTIGRID POTENTIAL

PRECONDITIONER

Consider the solution of the following vector wave equation
of a three-dimensional electromagnetic device:

(1)

The following FEM matrix equation is obtained by a Galerkin’s
procedure [6]:

(2)

where contains the expansion coefficients forand is
from the excitation on the driven port. As elaborated in [1] and
[4], the field formulation has the deficiency of slow convergence
when an iterative solver applies. One of the primary reasons for
this is the presence of spurious dc modes in the null space of
the curl operator. These spurious dc modes can be eliminated
or suppressed by using the vector-scalar potential formulation
to impose explicitly the divergence-free constraint on the field.
Following [2], , we obtain the matrix equation
for potential formulation from (1) and divergence-free condition

(3)

where and contain, respectively, the expansion coeffi-
cients for and . The field and potential formulations are
equivalent. This equivalence allows the transformation from the
matrix equation of field formulation (2) to the one of potential
formulation (3), as discussed in [2] and [6]. During the itera-
tive solution of (2), in order to render the search vectors diver-
gence-free, the pseudoresidual equation has to
be solved approximately using potential formulation by the fol-
lowing procedures. First, the matrix (2) of field formulation is
transformed to the one of the potential formulation (3). Next, in
the potential formulation, the matrix (3) is solved in two steps.
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Fig. 1. Flowchart of the proposed hybrid preconditioner.

Step 1 involves the solution of in ;
step 2 imposes explicitly the divergence-free field constraint in
order to eliminate/suppress the spurious dc modes by solving

in . Both are approximate solu-
tions and implemented through the Gauss–Seidel method. Fi-
nally, after the solution in the potential formulation is obtained,
it is transformed back to solution of the field formulation as dis-
cussed in [2] and [6].

Only to render the search vectors divergence-free is not
enough for fast convergence of the iterative solution, since it
cannot handle the low-frequency physical modes effectively
[1]. It has to be combined with multigrid/multilevel techniques.
The pseudocode, MG and flowchart of the pro-
posed hybrid potential preconditioner are in the following,
where and is level number for multilevel and multigrid
processes, respectively:

1. ,
2. if , // Nested Multigrid
2a. if ,
then solve // coarsest grid

2b. else
2b.1 smooth( ) for times.
2b.2 and
2b.3 MG
2b.4
2b.5 smooth( , ) for times.

3. else // Hierarchical Multilevel
3a. Smooth( , ) for times.
3b. and
3c. MG
3d.
3e. Smooth( , ) for times.

From the pseudocode and flowchart in Fig. 1, it is obvious the
nested multigrid preconditioning solution is placed in the solu-
tion of the matrix equation of the hierarchical mul-
tilevel preconditioner so that the matrix for the factorization is
further shrunk. The smoothing operations in both the nested and
the hierarchical preconditioning processes are performed on the
matrix equation of the potential formation as of discussed be-
fore.

Fig. 2. Number of iterations and CPU time versus the length of the microstrip
line.

and denote the interlevel operators that map the
residual and the correction between two adjacent levels. Since
the hierarchical basis functions are used, the construction of the
two operators is trivial. and are the intergrid operators.
They are the transformation matrix of the two sets of the basis
function spaces between two adjacent nested grids and its trans-
pose, respectively [4].

III. N UMERICAL RESULTS

The proposed hybrid preconditioner can be combined with a
Krylov subspace-based iterative solver. The stopping criterion
used is , where and is the
right-hand side vector of the matrix equation assuming that the
initial guess vector is zero. The number of presmoothing and
post-smoothing operations is taken to be . The
calculations are done on a Pentium III 600 MHz PC.

Fig. 2 depicts the number of iterations and the required
CPU time versus the length of an unbounded microstrip line.
The operating frequency is 20 GHz. The length of the line is
increased from 200 mils to 1200 mils (10.0 ). This results
in an increase in the number of unknowns from 24 936 to
160 962. The average spatial resolution in the coarsest grid is

3.5 pts .
The hybrid preconditioner uses a two-level hierarchical and a

two-grid nested process. The hierarchical multilevel precondi-
tioner uses two sets of basis functions, and .
Contrast to the hybrid one, the direct solution for the hierar-
chical preconditioner is called once after the pseudoresidual
equation is mapped to ; while for the hybrid pre-
conditioner, the equation is further shrunk to the coarser grid.
Therefore, the hierarchical preconditioner corresponds to the
upper block in the flowchart of Fig. 1. The third preconditioner
is the nested multigrid technique which is to solve the problem
only using the preconditioner uses two sets of nested
multigrids. It corresponds to the lower block in the flowchart
of Fig. 1.

From the comparison of the three preconditioners in Fig. 2,
it is clear that both the number of iterations and the CPU time
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Fig. 3. Scattering parameters of the bandstop filter. Waveguide dimensions:
22.86�10.16 mm. Length between resonators= 19.63 mm. Height of the
outer resonators= 16.54 mm; of the inner resonator= 16.94 mm. Iris thickness
= 0.0 mm. Outer iris width= 12.22 mm. Inner iris width= 11.63 mm. Height
of all irises= 3.05 mm.

increase with the line length, due to the numerical dispersion
error which is known to increase with electrical length. The hi-
erarchical multilevel one exhibits the best convergence perfor-
mance. Obviously, it performs better than the hybrid one, be-
cause it solves the matrix directly rather than solving
it approximately by mapping it down to a coarser grid as done
by the hybrid preconditioner. However, by doing so it factorizes
a larger matrix. For example, for the 1200-mil microstrip line,
there are 160 962 and 30 209 unknowns on the and

level, respectively. For the hierarchical multilevel pre-
conditioner, it factorizes the matrix of the size 30 209;
while for the hybrid preconditioner, it further maps the
matrix down to the one on the coarser grid, so that the size of ma-
trix for factorization is shrunk by about one eighth, e.g., 3930.
Because of the further mapping onto coarser grid, the hybrid
preconditioner shows slower convergence than the hierarchical
multilevel one. However, the gain is a much smaller matrix to be
factorized. Thus, the over CPU time is shortened and memory
requirement is less. For examples, for the 1200-mil line, the total
memory requirement is 60 MB for the hybrid preconditioner and
112 MB for the hierarchical multilevel one.

The next example considers the bandstop waveguide filter of
[8] (see Fig. 3). The numbers of unknowns on and

are 152 062 and 26 375. The average coarsest grid res-
olution is 5.1 pts at 12.4 GHz. Again, the hybrid precon-
ditioner uses a two-level and two-grid scheme. Thus the size of
matrix for factorization is 2784. The calculated scattering pa-
rameters are in excellent agreement with measured results. The
convergence behavior at various frequencies is shown in Fig. 4.
On the average, CPU time is about 150 s, while the total memory
requirement is 53 MB.

Fig. 4. Number of iterations at various frequencies.

IV. CONCLUDING REMARKS

An efficient hybrid multilevel/multigrid potential precondi-
tioner has been introduced and demonstrated for the robust and
expedient finite–element analysis of electromagnetic devices.
Through the combination of hierarchical multilevel and nested
multigrid techniques, the size of the matrix that requires LU
factorization is dramatically reduced, while the accuracy of the
FEM solution is guaranteed by using high-order spaces for the
expansion of the fields. Combined withhp-adaptive mesh re-
finement, the proposed hybrid preconditioner will enable robust,
fast, and accurate finite–element modeling of electrically large
electromagnetic structures with high geometric complexity.
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